Tetrahedron 57 (2001) 10247-10252

Three new cycloartane glycosides from Thalictrum thunbergii D.C.[☆]

Hitoshi Yoshimitsu, a,* Makiko Nishida and Toshihiro Nohara b

^aFaculty of Engineering, Kyushu Kyoritsu University, 1-8 Jiyugaoka Yahata-nishi-ku, Kitakyushu 807-8585, Japan ^bFaculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Received 13 September 2001; accepted 2 November 2001

Abstract—Three new cycloartane glycosides possessing a five-membered ring, which is constructed by a C-C bond, at the side chain have been isolated from the aerial parts of *Thalictrum thunbergii* D.C. Their structures were determined by the use of 2D NMR techniques and chemical evidence. © 2001 Elsevier Science Ltd. All rights reserved.

The genus *Thalictrum* plants grow widely in Japan. Thalictri Herba (dried whole plant of *Thalictrum* sp.) called Takatogusa has been used as a folk medicine for treating stomach disorders in Nagano Prefecture. We have reported the structural characterization of 10 cycloartane glycosides, thalictosides A and C,² from the fresh aerial parts of *Thalictrum thunbergii* D.C., which was cultivated in the Botanical Garden of Tokushima University, and thalictosides I, II, III, IV, V, IX, XII and XIII³ from Thalictri Herba. In our extended search for cycloartane-type glycosides, we have isolated three cycloartane glycosides, named thalictosides D (1), E (2), and F (3), from the aerial parts of *T. thunbergii* D.C., which was collected in Nagano Prefecture. This paper describes their structural elucidation.

The methanolic extract of the air-dried aerial parts of T. thunbergii D.C. was partitioned into a benzene-water solvent system. The water-soluble portion was subjected to MCI gel CHP20P, octadecyl silica gel (ODS) and silica gel column chromatographies and finally HPLC to give three glycosides (1-3).

Thalictoside D (1) was obtained as a white powder, $[\alpha]_D = -28.9^\circ$ (MeOH). In the negative-ion FAB-MS of 1, a quasi-molecular ion peak was observed at m/z 1267 $[M-H]^-$, while its positive-ion FAB-MS showed a quasi-molecular ion peak at m/z 1291 $[M+Na]^+$. The positive high-resolution (HR) FAB-MS showed a clustered molecular ion at m/z 1291.6300 $[C_{60}H_{100}O_{28}Na]^+$. The ¹H NMR

Keywords: glycosides; quasi-molecular; glucopyranosyl.
* Corresponding author. Tel.: +93-693-3203; fax: +93-603-8186; e-mail: yoshimit@kyukyo-u.ac.jp

spectrum displayed a couple of doublet signals at δ 0.32 and 0.85, which was characteristic of a cyclopropane methylene, five quaternary methyls at δ 1.24, 1.40, 1.43, 1.60 and 1.61, two secondary methyls at δ 1.65 (J= 6.1 Hz) and 1.73 (J=6.1 Hz), five anomeric protons at δ 4.85 (1H, d, *J*=7.3 Hz), 5.01 (1H, d, *J*=7.3 Hz), 5.47 (1H, d, J=7.3 Hz), 5.49 (1H, br s), and 6.70 (1H, br s). The above ¹H NMR data of **1** was similar to those of cycloartane glycosides from Thalictri Herba. A comparative study of the ¹³C NMR data of 1 with those of thalictosides III and IV indicated the presence of a diverse side chain. A sequence of connectivities through a methine proton at δ 2.89 (H-17), a methine proton at δ 2.27 (1H, dt, J=5.1, 7.2 Hz, H-20), a hydroxymethine proton at δ 4.22 (1H, dd, J=3.2, 7.2 Hz, H-22), methylene protons at δ 2.22 (1H, ddd, J=3.2, 9.2, 13.8 Hz, H-23 β) and 2.68 (1H, br d, J=14.0 Hz, H-23 α), a methine proton at δ 2.35 (1H, br d, J=11.6 Hz, H-24), a hydroxymethine proton at δ 4.82 (1H, br s, H-21) and a methine proton at δ 2.27 (H-20), in turn, was observed in the ¹H-¹H correlation spectroscopy (COSY) (Fig. 1(A)). The heteronuclear multiple bond correlation spectroscopy (HMBC) was observed between two singlet methyls ($\delta_{\rm H}$ 1.40 and 1.61) and C-24 ($\delta_{\rm C}$ 60.7) (Fig. 1(A)). In addition, the nuclear Overhauser effect spectroscopy (NOESY) was observed between the following protons: H₃-18 and H-20; H-20 and H-22, H-23β, H-24; H-21 and H₃-26, H₃-27; H-23 β and H-23 α , H-24; H₃-28 and H-17. Consequently, this NOESY experiment suggested the stereo configuration for the structure of 1 to be as shown in Fig. 1(B). On acid hydrolysis, 1 afforded D-glucose and L-rhamnose, together with several unidentified artificial sapogenols.⁴ The ¹H and ¹³C NMR spectrum of 1, which could be assigned with the aid of ¹H-¹H COSY, heteronuclear multiple quantum coherence (HMQC), total correlation spectroscopy (TOCSY) and HMBC techniques, showed signals due to the pentasaccharide moiety consisted of three glucopyrano-

[☆] See Ref. 1.

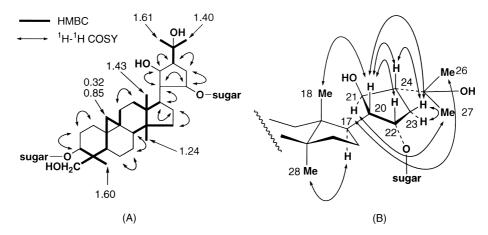


Figure 1. (A) ¹H-¹H-COSY and HMBC spectrum of 1; (B) NOESY spectrum of 1.

syl moieties δ 4.85 (d, J=7.3 Hz, H-1'''), δ 5.01 (d, J=7.3 Hz, H-1'), and δ 5.47 (d, J=7.3 Hz, H-1''')) and two rhamnopyranosyl moieties (δ 5.49 (br s, H-1"), and δ 6.70 (br s, H-1")). The HMBC experiment showed that the trisaccharide and the disaccharide moieties were linked to the C-3 and C-22 hydroxyl groups of the aglycone, respectively. Moreover, long-range correlations were observed between the H-1' of the glucopyranosyl moiety and the C-3 of the aglycone, between the H-1" of the rhamnopyranosyl moiety and the C-2' of the glucopyranosyl moiety, between the H-1" of the rhamnopyranosyl moiety and the C-6' of the glucopyranosyl moiety, between the H-1"" of the glucopyranosyl moiety and the C-22 of the aglycone and between the H-1"" of the glucopyranosyl moiety and the C-2" of the glucopyranosyl moiety (Fig. 2). From the above evidence, the structure of 1 was concluded to be 22-O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl 20R,21R,22S,24R-cycloartane-3β,21,22,25,30pentaol 3-O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)$]- β -D-glucopyranoside.

Thalictoside E (2) was obtained as a white powder, $[\alpha]_D = -29.6^{\circ}$ (MeOH). In the negative-ion FAB-MS of 1, a quasi-molecular ion peak was observed at m/z 1399 $[M-H]^-$, while its positive-ion FAB-MS showed a quasi-molecular ion peak at m/z 1423 $[M+Na]^+$. The positive HR-FAB-MS showed a clustered molecular ion at m/z 1423.6727 $[C_{65}H_{108}O_{32}Na]^+$. The 1H and ^{13}C NMR spectrum (Tables 1 and 2) were also similar to those of 1 except for the signals due to the sugar moiety. Meanwhile, the

molecular formula C₆₅H₁₀₈O₃₂ was higher by C₅H₈O₄ than that of 1. On acid hydrolysis, 2 afforded D-glucose, D-xylose and L-rhamnose, together with several unidentified artificial sapogenols.⁴ Furthermore, a comparative study of the ¹³C NMR spectrum of 2 with that of 1 indicated the presence of an additional xylosyl unit in 2, which was linked to the C-6 hydroxyl group of the glucopyranosyl moiety attached to the C-22 hydroxyl group of the aglycone. The ¹H and ¹³C NMR spectrum of 2, which could be assigned with the aid of ¹H-¹H COSY, HMQC, TOCSY and HMBC techniques, showed signals due to the hexasaccharide moiety consisted of three glucopyranosyl moieties (δ 4.76 (d, J=7.9 Hz, H-1""), δ 5.00 (d, J=7.9 Hz, H-1'), and δ 5.41 (d, J=7.3 Hz, H-1""), one xylopyranosyl moiety (δ 5.01 (d, J= 7.9 Hz, H-1''')) and two rhamnopyranosyl moieties (δ 5.48 (br s, H-1"), and δ 6.68 (br s, H-1")). The HMBC experiment of 2 showed the same result as that of 1, except longrange correlations between H-1"" of the xylopyranosyl moiety and the C-6" of the glucopyranosyl moiety attached to the C-22 hydroxyl group of the aglycone. Consequently, the structure of 2 was determined to be 22-O-β-D-glucopyranosyl- $(1\rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1\rightarrow 6)]$ - β -D-glucopyranosyl 20*R*,21*R*,22*S*,24*R*-cycloartane-3β,21,22,25,30-3-O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)$]- β -D-glucopyranoside.

Thalictoside F (3) was obtained as a white powder, $[\alpha]_D = -29.1^{\circ}$ (MeOH). In the negative-ion FAB-MS of 3, a quasi-molecular ion peak was observed at m/z 1399 $[M-H]^-$, while its positive-ion FAB-MS showed a

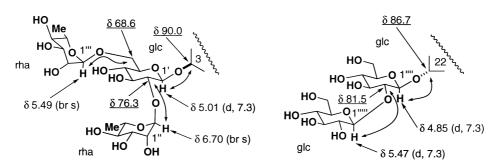


Figure 2. ¹H-¹³C long-range correlation of the saccharide moieties of 1. *J* values (Hz) in the ¹H NMR spectrum are given in parentheses. Underlined values indicate ¹³C NMR chemical shifts.

Table 1. 1 H NMR chemical shifts for oligosaccharide moieties of 1–3 (pyridine- d_{5})

Н	1	2	3	
1	1.25, 1.74	1.27, 1.74	1.22, 1.69	
2	1.87, 2.48	1.86, 2.49	1.88, 2.48	
3	3.68 dd(4.3, 11.6)	3.68 dd(4.9, 11.6)	3.65 dd(4.3, 11.6)	
5 6	1.38 1.39, 1.78	1.38 1.38, 1.78	1.37 1.39, 1.78	
7	0.90, 1.23	0.90, 1.23	0.91, 1.24	
8	1.62	1.61	1.54	
11	1.08, 2.08	1.08, 2.06	0.99, 1.99	
12	2.08, 2.44	2.06, 2.43	1.68, 2.28	
15	1.25, 1.41	1.26, 1.36	1.31, 1.42	
16	1.41, 2.39	1.29, 2.33	1.44, 2.12	
17	2.89	2.86	3.07	
18	1.43 s	1.45 s	1.01 s	
19	0.32 d(3.7) 0.85 d(3.7)	0.32 d(3.6) 0.85 d(3.6)	0.32 d(3.6) 0.82 d(3.6)	
20	2.27 dt(5.1, 7.2)	2.22 dt(5.2, 7.0)	1.75	
21	4.82 br s	4.78 br s	4.55 br d(4.4)	
22	4.22 dd(3.2, 7.2)	4.21 dd(3.0, 7.0)	4.35 br s	
23	2.22 ddd(3.2, 9.2, 13.8)	2.37 ddd(3.0, 9.3, 13.2)	1.95 ddd(3.1, 9.3, 13.2)	
	2.68 br d(14.0)	2.77 br d(13.4)	2.65 dd(9.2, 13.2)	
24	2.35 br d(11.6)	2.34 br d(11.3)	2.75 dd(9.2, 9.2)	
26	1.61 s	1.60 s	1.52 s	
27	1.40 s	1.40 s	1.30 s	
28 29	1.24 s 1.60 s	1.23 s 1.59 s	1.07 s 1.58 s	
30	4.33, 4.41	4.32, 4.40	4.33, 4.40	
glc-1'	5.01 d(7.3)	5.00 d(7.9)	5.00 d(7.9)	
2'	4.36 dd(7.3, 9.2)	4.35 dd(7.9, 9.2)	4.34 dd(7.9, 9.2)	
3′	4.29 dd(9.2, 9.2)	4.28 dd(9.2, 9.2)	4.28	
4′	3.93 dd(9.2, 9.2)	3.93 dd(9.2, 9.2)	3.94 dd(9.2, 9.2)	
5'	4.03 m	4.04 m	4.04 m	
6′	4.15 dd (5.5,11.0)	4.14 dd (4.3,11.6)	4.15 dd (4.8,11.5)	
rha-1"	4.64 br d(11.0) 6.70 br s	4.64 br d(10.4) 6.68 br s	4.63 br d(10.4) 6.69 br s	
2"	4.78 br s	4.77 br s	4.77 br s	
3"	4.77 dd (3.0,9.1)	4.76 dd (3.0,9.2)	4.76 br d(9.2)	
4"	4.29 dd (9.1,9.2)	4.30 dd (9.2,9.2)	4.31	
5"	4.93 m	4.94 m	4.93 m	
6"	1.73 d (6.1)	1.72 d (6.1)	1.74 d (6.1)	
rha-1"	5.49 br s	5.48 br s	5.50 br s	
2"' 3"'	4.56 d (3.0)	4.55 br s	4.57 br s	
3''' 4'''	4.51 dd (3.0,9.2) 4.27 dd (9.2,9.2)	4.50 dd (3.1,9.2) 4.28 dd (9.2,9.2)	4.50 dd (3.1,9.2) 4.27 dd (9.2,9.2)	
5‴	4.27 dd (9.2,9.2) 4.35 m	4.28 dd (9.2,9.2) 4.32 m	4.27 dd (9.2,9.2) 4.33 m	
6′′′	1.65 d (6.1)	1.64 d (6.1)	1.65 d (6.1)	
glc-1""	4.85 d (7.3)	4.76 d (7.9)	4.90 d (7.9)	
2""	4.07 dd (7.3,8.5)	3.98 dd (7.9,9.2)	3.84 dd (7.9,8.5)	
3""	4.18 dd (8.5,9.2)	4.11 dd (9.2,9.2)	4.19 dd (8.5,8.5)	
4""	4.01 dd (9.2,9.2)	3.93 dd (9.2,9.2)	4.13 dd (8.5,8.5)	
5""	3.89 m	3.89 m	4.05 m	
6""	4.32 dd (5.0,11.8)	4.19 dd (4.9,11.5)	4.39 dd (4.8,11.6) 4.80 br d (10.4)	
glc-	4.56 5.47 d (7.3)	4.79 br d (10.4) 5.41 d (7.3)	4.80 br d (10.4) 5.30 d (7.3)	
1""	3.77 u (1.3)	J. TI U (1.J)	5.50 t (1.5)	
2""'	4.18 dd (7.3,8.5)	4.14 dd (7.3,8.5)	4.13 dd (7.3,8.5)	
3""'	4.19	4.17 dd (8.5,9.2)	4.18 dd (8.5,8.5)	
4""'	3.96 dd (9.2,9.2)	3.93 dd (9.2,9.2)	4.23	
5""'	3.95 m	3.96 m	3.73 m	
6""'	4.32 dd (5.0,11.0)	4.29	4.33	
1	4.40 br d (11.0)	4.63 br d (10.4)	4.40	
xyl- 1"""		5.00 d (7.9)	5.10 d (7.3)	
2"""		4.04 dd (7.9,8.5)	4.07 dd (7.3,7.9)	
3"""		4.17 dd (8.5,8.5)	4.16 dd (7.9,8.5)	
4"""		4.26 m	4.25 m	
5"""		3.72 br t (10.4)	3.73 dd (9.8,11.6)	
		4.37 dd (4.5,11.0)	4.40 dd (4.9,11.6)	

Coupling constants (J in Hz) are given in parentheses.

Table 2. ¹³C NMR data for 1-3 (pyridine- d_5)

С	1	2	3	
1	32.4	32.5	32.4	
2	30.0	30.0	29.9	
3	90.0	90.0	89.8	
4	45.4	45.4	45.3	
5	48.7	48.7	48.2	
6	22.9	22.9	22.7	
7 8	27.4	27.4	27.0 48.5	
9	48.8 19.9	48.8 19.9	48.5 19.8	
10	26.5	26.5	26.5	
11	26.7	26.7	26.8	
12	30.8	30.8	31.5	
13	45.7	45.7	45.5	
14	48.8	48.8	48.8	
15	36.1	36.1	36.2	
16	28.1	28.1	28.4	
17	45.7	45.7	40.1	
18	18.9	18.9	19.2	
19	31.2	31.2	30.7	
20	57.3	57.2	52.6	
21	77.4	77.5	75.6	
22	86.7	86.8	87.2	
23	34.5	34.7	35.9	
24	60.7	60.4	61.1	
25	71.1	71.2	70.6	
26	29.2	29.2	29.6	
27	29.8	29.8	27.4	
28	21.2	21.2	20.4	
29 30	20.1 60.8	20.1 60.9	20.0 60.8	
glc-1'	105.4	105.4	105.3	
2'	76.3	76.4	76.4	
3'	80.2	80.2	80.2	
4'	72.1	72.1	72.1	
5'	76.6	76.6	76.6	
6'	68.6	68.6	68.5	
rha-1"	101.0	101.0	101.0	
2"	72.3	72.3	72.3	
3"	72.4	72.4	72.4	
4"	74.5	74.5	74.5	
5"	69.2	69.2	69.2	
6"	18.5	18.5	18.5	
rha-1"	102.7	102.7	102.7	
2′′′	72.2	72.2	72.3	
3‴	72.9	72.9	72.8	
4′′′	73.9	73.9	73.9	
5''' 6'''	69.8	69.8	69.8	
glc-1""	18.7	18.7 103.1	18.7	
2''''	103.2 81.5	81.3	102.6 83.5	
3""	81.5 78.6	81.3 78.6	83.5 78.6	
4""	71.6	71.2	70.8	
5""	78.6	77.3	70.8 77.4	
6''''	63.0	68.9	69.5	
glc-	105.4	105.4	106.2	
1""'	-00			
2""'	75.5	75.5	75.6	
3""'	78.7	78.2	78.4	
4""'	71.9	71.9	70.8	
5""'	77.8	79.8	78.9	
6""'	63.9	63.9	62.1	
xyl-		105.9	106.0	
1"""				
2"""		75.0	75.0	
3"""		78.2	78.3	
4""" 5"""		71.2 67.2	71.2 67.2	

quasi-molecular ion peak at m/z 1423 $[M+Na]^+$. The positive HR-FAB-MS showed a clustered molecular ion at m/z $[1423.6724 \quad [C_{65}H_{108}O_{32}Na]^{+}$. The ¹H NMR spectrum displayed signals due to a cyclopropane methylene (δ 0.32 and 0.82 (each 1H, d, J=3.6 Hz)), five quaternary methyls (δ 1.01, 1.07, 1.30, 1.52, and 1.58), two secondary methyls (δ 1.65 (J=6.1 Hz), and 1.74 (J=6.1 Hz)), six anomeric protons (δ 4.90 (1H, d, J=7.9 Hz), 5.00 (1H, d, J=7.9 Hz), 5.10 (1H, d, J=7.3 Hz), 5.30 (1H, d, J=7.3 Hz), 5.50 (1H, br s), and 6.69 (1H, br s). The above ¹H NMR data of 3 was similar to that of thalictoside E (2). A sequence of connectivities through a methine proton at δ 3.04 (H-17), a methine proton at δ 1.75 (1H, overlapped, H-20), a hydroxymethine proton at δ 4.53 (1H, br s, H-22), methylene protons at δ 1.95 (1H, ddd, J=3.1, 9.3, 13.2 Hz, H-23 β) and 2.65 (1H, dd, J=9.2, 13.2 Hz, H-23 α), a methine proton at δ 2.75 (1H, dd, J=9.2, 9.2 Hz, H-24), a hydroxymethine proton at δ 4.55 (1H, br d, J=4.4 Hz, H-21) and a methine proton at δ 1.75 (H-20), in turn, was observed in the ^{1}H - ^{1}H COSY (Fig. 3(A)). The HMBC was observed between two singlet methyls (δ_H 1.30 and 1.52) and C-24 (δ_C 61.1) (Fig. 3(A)). The above data indicated the presence of a different configuration five-membered ring, which was constructed by a C-C bond. In addition, the NOESY was observed between the following protons: H₃-18 and H-21, H-20; H-20 and H-21, H-22; H-21 and H₃-26, H₃-27; H-22 and H-23 β ; H-23 β and H-23 α ; H-23 α and H-24; H₃-28 and H-17. Consequently, this NOESY experiment suggested the stereo configuration for the structure of 3 to be as shown in Fig. 3(B). On acid hydrolysis, 3 afforded D-glucose, D-xylose and L-rhamnose, together with several unidentified artificial sapogenols.⁵ The ¹H and ¹³C NMR spectrum of 3, which could be assigned with the aid of ¹H-¹H COSY, HMQC, TOCSY and HMBC techniques, showed signals due to the hexasaccharide moiety consisted of three glucopyranosyl moieties (δ 5.00 (d, J=7.9 Hz, H-1'), and δ 4.90 (d, J=7.9 Hz, H-1'''), δ 5.30 (d, J=7.3 Hz, H-1""), two rhamnopyranosyl moieties (δ 6.69 (br s, H-1"), and δ 5.50 (br s, H-1"")) and one xylopyranosyl moiety (δ 5.10 (d, J=7.3 Hz, H-1"")). The HMBC experiment showed that two trisaccharide moieties were linked to the C-3 and C-22 hydroxyl groups of the aglycone, respectively. Moreover, long-range correlations were observed between the H-1' of the glucopyranosyl moiety and the C-3 of the aglycone, between the H-1" of the rhamnopyranosyl moiety and the C-2' of the glucopyranosyl moiety, between the H-1" of the rhamnopyranosyl moiety and the C-6' of the glucopyranosyl moiety, between the H-1"" of the glucopyranosyl moiety and the C-22 of the aglycone, between the H-1"" of the glucopyranosyl moiety and the C-2" of the glucopyranosyl moiety and between the H-1"" of the xylopyranosyl moiety and the C-6"" of the glucopyranosyl moiety (Fig. 4). From the above evidence, the structure of 3 was concluded to be 22-O-β-D-glucopyranosyl- $(1\rightarrow 2)$ - $[\beta$ -D-xylopyranosyl- $(1\rightarrow 6)]$ - β -D-glucopyranosyl 20R,21S,22S,24S-cycloartane-3β,21,22,25,30-3-O- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $[\alpha$ -L-rhamnopentaol pyranosyl- $(1\rightarrow 6)$]- β -D-glucopyranoside. They are novel cycloartane glycosides having structural peculiarities, namely, a C-C bond between 21 and 24 and bisdesmoside at C-3 and C-22. The coexistent analogous³ having a carbonyl group at C-21 and a double bond at Δ^{24} would cause a new C-C bond formation between C-21 and C-24.

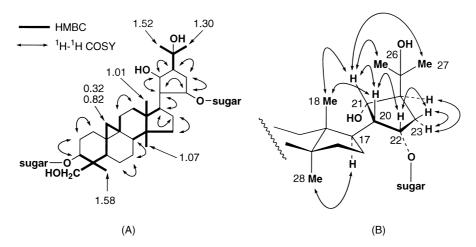


Figure 3. (A) ¹H-¹H-COSY and HMBC spectrum of 3; (B) NOESY spectrum of 3.

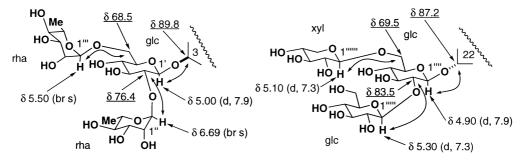


Figure 4. ¹H-¹³C long-range correlation of the saccharide moieties of 3. *J* values (Hz) in the ¹H NMR spectrum are given in parentheses. Underlined values indicate ¹³C NMR chemical shifts.

HO
$$\frac{21}{HO}$$
 $\frac{21}{24}$ $\frac{22}{22}$ $\frac{22}{20}$ $\frac{20}{100}$ $\frac{20}{OH}$ $\frac{21}{OH}$ $\frac{21}{OH}$

1. Experimental

1.1. General procedures

Optical rotations were taken with a JASCO DIP-1000 automatic digital polarimeter. The NMR spectra were measured with a JEOL alpha 500 NMR spectrometer and chemical shifts are given on a δ (ppm) scale with tetramethylsilane (TMS) as an internal standard. The HR-FAB-MS was recorded with a JEOL HX-110 spectrometer. Gas liquid chromatography (GLC) was performed on a HP5890A gas chromatography with a flame ionization detector (FID). HPLC was carried out using a TSK gel-120A (7.8 mm

i.d.×30 cm) column with a Tosoh CCPM pump and Tosoh RI-8010 differential refractometer as a detector. TLC was performed on pre-coated Kieselgel 60 F_{254} (Merck), and detection was achieved by spraying with 10% H_2SO_4 followed by heating. Column chromatography was carried out on Kieselgel (230–400 mesh, Merck), ODS (PrePAK-500/C₁₈, Waters) and MCI gel CHP20P (Mitsubishi Chemical Ind.).

1.2. Extraction and isolation

The fresh aerial parts of *T. thunbergii* D.C. were collected in Nagano Prefecture of Japan. The dried aerial parts of

(4.0 kg) were extracted with MeOH at room temperature for 6 months, and the extract (549 g) was partitioned in benzene and water (1:1). The water-soluble portion (466 g) was subjected to MCI gel CHP20P column chromatography with MeOH-H₂O $(30\rightarrow40\rightarrow50\rightarrow60\rightarrow70\rightarrow80\rightarrow90\%)$ to afford 10 fractions (fr.1–fr.10). Fraction 2 (15 g) was further separated by ODS column chromatography with MeOH- H_2O (35 \rightarrow 40 \rightarrow 45 \rightarrow 50 \rightarrow 55 \rightarrow 60%) to afford five fractions (fr.11-fr.15). Fraction 12 (239 mg) was subjected to silica gel column chromatography with CHCl₃-MeOH-H₂O (6:4:1), followed by HPLC with MeOH-H₂O (1:1), to furnish thalictosides D (2) (9 mg) and E (3) (8 mg). Fraction 14 (103 mg) was subjected to silica gel column chromatography with CHCl₃-MeOH-H₂O (6:4:1), followed by HPLC with MeOH-H₂O (1:1), to furnish tahlictoside F (1) (9 mg).

- **1.2.1. Thalictoside D** (1). A white powder, $[\alpha]_D^{25} = 28.9^{\circ}$ (c = 0.45, MeOH). Neg. FAB-MS (m/z): 1267 [M-H]⁻. Pos. FAB-MS (m/z): 1291 [M+Na]⁺. HR-FAB-MS (m/z): 1291.6300 [M+Na]⁺ (Calcd for $C_{60}H_{100}O_{28}Na$ 1291.6311). ¹H and ¹³C NMR (pyridine- d_5): Tables 1 and 2.
- **1.2.2. Thalictoside E (2).** A white powder, $[\alpha]_D^{25} = -29.6^{\circ}$ (c=0.40, MeOH). Neg. FAB-MS (m/z): 1399 [M-H]⁻. Pos. FAB-MS (m/z): 1423 [M+Na]⁺. HR-FAB-MS (m/z): 1423.6727 [M+Na]⁺ (Calcd for C₆₅H₁₀₈O₃₂Na 1423.6721). ¹H and ¹³C NMR (pyridine- d_5): Tables 1 and 2.
- **1.2.3. Thalictoside F (3).** A white powder, $[\alpha]_D^{25} = -29.1^{\circ}$ (c = 0.51, MeOH). Neg. FAB-MS (m/z): 1399 [M-H]⁻. Pos. FAB-MS (m/z): 1423 [M+Na]⁺. HR-FAB-MS (m/z): 1423.6724 [M+Na]⁺ (Calcd for $C_{65}H_{108}O_{32}Na$ 1423.6721). ¹H and ¹³C NMR (pyridine- d_5): Tables 1 and 2.
- 1.2.4. Sugar analysis of 1, 2 and 3. A solution each of 1 and 2 (2 mg) in 2N HCl-dioxane (1:1, 2 ml) was heated at 90°C for 2 h. The solution was neutralized with Amberlite IRA-400 and passed through a SEP-PAK C₁₈ cartridge to give a sugar fraction. The sugar fraction was concentrated to dryness in vacuo to give a residue, which was dissolved in dry pyridine and added to L-cysteine methyl ester hydrochloride. The reaction mixture was heated at 60°C for 1 h and concentrated to dryness by blowing N₂ gas. To the residue was added trimethylsilylimidazole, and the mixture was heated at 60°C for 1 h. The reaction mixture was concentrated to dryness by blowing N₂ gas. The residue was extracted with n-hexane and H₂O, and the organic layer was analyzed by GLC: column, OV-17 (0.32 mm× 30 m); detector, FID; column temperature, 230°C; detector temperature, 270°C; injector temperature, 270°C; carrier gas, He (2.2 kg/cm²). t_R (min) of trimethylsilyl ether of methyl 2-(polyhydroxyalkyl)-thiazolidine-4(R)-carboxylates were as follows. 1: D-xylose 9.7, L-rhamnose 11.6, D-glucose 17.1. 2: D-xylose 9.7, L-rhamnose 11.6, D-glucose 17.1. The standard monosaccharides were subjected to the same reaction and GLC analysis under the same conditions.

A solution of 3 (1 mg) in 2N HCl-dioxane (1:1, 2 ml) was heated at 100°C for 1 h. The reaction mixture was diluted with H₂O and evaporated to remove dioxane. The solution was neutralized with Amberlite MB-3 and passed through a SEP-PAK C₁₈ cartridge to give a sugar fraction. A solution of the sugar fraction was analyzed by TLC [CH3CN-MeOH- H_2O (6:4:1), **3**: rhamnose, R_f 0.54; xylose, R_f 0.40; glucose, $R_{\rm f}$ 0.29]. A solution of the sugar fraction in 1 ml of H_2O was treated with a solution of L-(-)- α -methylbenzylamine (150 µl) and NaBH₃CN (8 mg) in 1 ml of EtOH, and the mixture was kept at 40°C for 3 h. Then, several drops of acetic acid were added and the mixture was concentrated to dryness. The residue dissolved in Ac₂O-C₅H₅N (1:1, 2 ml) was treated with 4-(dimethylamino)-pyridine (DMAP) (20 mg), and the whole mixture was left at room temperature overnight. After removal of excess Ac₂O and C₅H₅N, the residue dissolved in 20% CH₃CN was loaded into a SEP-PAK C₁₈ cartridge and eluted with 20% CH₃CN (total 7 ml) and 100% CH₃CN. The fraction eluted with 100% CH₃CN was analyzed by normal-phase HPLC. Conditions of HPLC: column, Develosil 60-3, 3 µm (4.6 mm i.d.×150 mm); solvent, n-hexane-EtOH (19:1); flow rate, 1.20 ml/min; detection, UV (230 nm). t_R (min) of 1-(N-acetyl-L- α -methylbenzylamino)-1-deoxyalditol acetates were as follows. 3; L-rhamnose 17.1, D-xylose 30.6, D-glucose 30.6. (Reference: L-rhamnose 17.0, D-xylose 30.7, D-glucose 30.8).

Acknowledgements

We are grateful to Mr K. Takeda and Mr T. Iriguti of Kumamoto University for measurement of NMR spectra. We are grateful to Professor H. Okabe and Dr T. Nagao in Department of Pharmaceutical Sciences, Fukuoka University for measurements of HR-FAB-MS.

References

- 1. A part of this work was reported in our preliminary communication: Yoshimitsu, H.; Nishida, M.; Yahara, S.; Nohara, T. *Tetrahedron Lett.* **1998**, *39*, 6919–6920.
- 2. Yoshimitsu, H.; Hayashi, K.; Shingu, K.; Kinjo, J.; Yahara, S.; Nakano, K.; Murakami, K.; Tomimatsu, T.; Nohara, T. *Chem. Pharm. Bull.* **1992**, *40*, 2465–2468.
- Yoshimitsu, H.; Hayashi, K.; Kumabe, M.; Nohara, T. *Chem. Pharm. Bull.* 1993, 41, 786–788. (b) Yoshimitsu, H.; Hayashi, K.; Kumabe, M.; Nohara, T. *Chem. Pharm. Bull.* 1994, 42, 101–104. (c) Yoshimitsu, H.; Hayashi, K.; Kumabe, M.; Nohara, T. *Phytochemistry* 1995, 38, 939–942. (d) Yoshimitsu, H.; Hayashi, K.; Kumabe, M.; Nohara, T. *Nat. Med.* 1997, 51, 131–133.
- Hara, S.; Okabe, H.; Mihashi, K. Chem. Pharm. Bull. 1987, 35, 501–506.
- Oshima, R.; Yamauchi, Y.; Kumanotani J. Carbohydr. Res. 1982, 107, 169–176.